Final Review 2

Problem 1: Consider the matrix:

$$
A=\left[\begin{array}{ccc}
-2 & 3 & 3 \\
2 & -1 & -1 \\
-7 & 7 & 6
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A.
(b) Compute eigenvalues and eigenvectors of A.
(c) Diagonalize the matrix A.
(d) Describe the behavior of the solution to the system $\dot{\boldsymbol{v}}(t)=A \boldsymbol{v}(t)$ as $t \rightarrow \infty$, where \boldsymbol{v} is a vector consisting of three functions of t.
(e) Use Cramer's rule to find a solution to the equation $A \boldsymbol{w}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Problem 2: Consider the matrix:

$$
A=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
1 & 1 \\
0 & -\sqrt{2}
\end{array}\right]
$$

(a) Compute the SVD of A.
(b) Consider the symmetric matrices $A^{T} A$ and $A A^{T}$. Are they positive definite, positive semidefinite, or neither? What are the corresponding energy functions of these symmetric matrices?
(c) Find numbers a and b for which the quantity:

$$
(a \sqrt{2}-1)^{2}+(a+b-1)^{2}+(-b \sqrt{2}-1)^{2}
$$

is minimal.

Problem 3: Consider two random variables X and Y, which take values:

$$
\begin{array}{ll}
\{x=1 \text { and } y=1\} & \text { with probability } \frac{2}{3} \\
\{x=0 \text { and } y=3\} & \text { with probability } \frac{1}{3}
\end{array}
$$

(a) Find linear combinations of x and y which are uncorrelated (i.e. have covariance 0).
(b) Find a general formula, in terms of matrices and vectors, for the covariance of any two linear combinations of these random variables: $a x+b y$ and $a^{\prime} x+b^{\prime} y$ (where $a, b, a^{\prime}, b^{\prime}$ are numbers).

